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INTRODUCTION

We have entered an era in which it has become increasingly
important to develop human engineering principles which will
significantly improve the structure of programs and assist programmers
in ensuring system reliability and maintainability. To achieve this,
it is important to understand the effects of program structure on a
programmer's ability to comprehend, alter, and maintain complex
programs from both a theoretical and applied perspective.

m tical F i

In order to understand the effects of program structure on
programmer productivity, we must consider the way in which knowledge
about computer program is cognitively represented and used by the
programmer, and the way in which program structure affects the
construction and use of this cognitive representation.

Cognitive representation. The basic facets of a cognitive
representation or knowledge structure are the fundamental elements or
entities of which the structure is composed and the relationships among
those fundamental elements (Sowa, 1984). There are different views,
however, on what the fundamental elements and relationships are for
programmers'® knowledge of computer programs.

Weiser (1982) has hypothesized that programmers cognitively deal
with segments of programs that are comprised of either contiguous lines
of code or of functionally related lines of code. These functional
units deal with the same set of variables, forming a mini-program which
Weiser calls a program "slice". Recall of programmers for debugged
programs indicated that they had stored both chunks of contiguous lines
of code and program slices. Thus the fundamental elements may
represent either a functional unit such as a program slice or a
contiguous block of code.
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Adelson (1981) studied the recall of both novice and expert
programmers for lines of three small computer programs. The clustered
recall of the novices suggested that they were clustering lines of code
from all three programs on the basis of syntactic categories such as
"all IF statements"., Experts, on the other hand, used the functional
units of the three programs themselves to cluster their recall of the
lines of code. Since these three programs contained only 16 lines of
code, the size of these programs corresponded to the size of the slices
discussed by Weiser.
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The results for expert programmers in these two studies are
consistent in indicating some functionally-based organization of the
program material on the part of professional programmers. However,
Adelson's results for novice programmers suggest that syntactic
classification can also be used for organizing program material, and
Weiser's results suggest that simple contiguity can also be used for
ordganizing program material,

The structure organizing these basic elements of program
comprehension is generally supposed to be a basic hierarchical
structure of larger, more abstract elements subsuming lower-level, more
detailed elements (Shneiderman & Mayer, 1979, Basili and Mills, 1982).
Besides the inclusion relationship that generates a hierarchical
structure, other types of relationships are possible among program
chunks, such as causal relationships between a computational subroutine
and an I/0 subroutine that is invoked by it.

Effects of program structure.  Several studies support the idea
that a program with a clear, appropriate structure facilitates

programmer performance. Norcio (1982) found that an indented form of
documentation  which clarified the control structure in a program and
explained the functional nature of each program segment was superior to
other forms of documentation for filling in missing statements.




Similarly, Shepard, Kruesi, and Curtis (1981) found that visually
emphasizing the control flow in a program structure facilitated forward
or backward tracing of the execution characteristics of the program,
Boehm-Davis and Fregly (1985) found that a high-level "resource" type
of documentation which emphasized the nature and structure of the
communication between concurrent processes in a program facilitated
modifications for this kind of complex program.

The fact that different aspects of structure emphasized in these
studies facilitated programmer performance suggests that the structure
emphasized by the program must be appropriate to the type of task being
performed by the programmer. As Brooks (1983) stated in his discussion
of a similar point, "Thus, a programmer whose task is to modify the
output format will be more concerned with the output statements and
less concerned with the major control structure than one who is
attempting to find a bug that is causing the program to produce wrong
values" (pp. 552-553). Since the above research indicates that the
type of appropriate structure also varies with the inherent nature of
the program, basic research studying the effects of different types of
program structures across qualitatively distinct types of programs on
programmer performance is necessary.

The issue of program structure has been addressed in the field of
computer science in the form of program design methodologies, which
seek to provide overall strategies for structuring solutions to
conputer problems. In general, these methods seek to improve the final
program by dividing the problem into manageable parts, thus allowing
the designer to deal with smaller units which are easier to code,
verify, and modify. While some attempts have been made to compare
specific design methodologies with each other, these comparisons have
generally been non-experimental in nature and have not provided any
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general guidelines as to which methodologies (or which properties of
methodologies) result in the most maintainable code. Such guidelines
would be very useful for project managers. One approach for developing
guidelines is to identify a major factor underlying the differences
among methodologies and to evaluate the effect of this factor
experimentally.

One fundamental difference among methodologies is the criterion
used to decompose the problem into smaller units. The methodologies
basically vary in the extent and type of modularization of the code.
On one end of this dimension is in-line code, where all of the
procedures are contained in the main routine of the program. On the
other end of the dimension are techniques which rely partially on data
structures and partially on operations as the basis for structuring the
programs (such as object-oriented design or Parnas' information-hiding
technique). Falling in between these two are techniques which rely on
functions alone as the basis for structuring the problem, such as

functional decomposition, or top—down design.

More specifically, in object-oriented design the criterion used to
modularize the program is that one module should be created for each
object (design decision) in the program. Operations are then defined
for each object, and these operations are the only ones permitted on
that object. In this way, each module can be created independently
from the other modules in the program, i.e., does not rely on knowledge
of the representation of data in any other module.

In functional decomposition the criterion used to structure the
program is that each major processing step (or operation) forms one
function or subroutine in the program, High-level functions or
subroutines are then further decomposed into smaller ones, each of
which represents a smaller processing step.
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Program structure is important from an applied perspective due to
the potentially large benefits that could accrue to a software project
at a relatively low cost. This is true, at least in part, because
improved programs reduce labor costs, especially during later phases of
the software 1life cycle where such costs are greatest (Putnam, 1978).
Recent reports have asserted that almost 70% of costs associated with
software are sustained after the product is delivered (Boehm, 198l1).
These costs generally are spent in maintenance; that is, modifications
and error corrections to the original program. These figures suggest
that even small improvements in program maintainability could be
translated into substantial cost savings. While many methodologies,
tools, and other programming aids have been developed to produce more
maintainable software, little empirical work has been done to establish
either objective measures of maintainability or a particular tool's
success in producing a maintainable product.

Our recent series of studies investigating the impact of
documentation format on program comprehensibility, codability,
verifiability, and modifiability represents a systematic, objective
evaluation of the impact of a programming tool (Boehm-Davis, Sheppard,
and Bailey, 1982; Sheppard, Bailey, and Bailey, 1984; Sheppard, Kruesi,
and Curtis, 1981). There is, however, almost a total absence of
research examining the impact of tools and methodologies early in the
software process, such as in program design. Research done at TRW,
IBM, and Raytheon suggests that errors made early in the project and
carried on into testing and integration are the most costly type of
error to find and correct. Also, characteristics of the program
itself, such as its complexity, generally determine the subsequent ease
of understanding and modifying the program.
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Study Design

In this study, programs were created using each of three design
approaches., The three program design forms were straight serial
structure (in-line code), structure emphasizing functional units of the
program (functional decomposition), and structure emphasizing larger
object-oriented modules of the program (object-oriented). These
program structures were used to write programs for each of three
problems. The problems involved a real-time response system, a
database system with files, and a program oconstrucuting large
linked-list data structures, Ease of maintenance for these programs
was examined by presenting programmers with modifications to be made to
the code and measuring the amount of time required to make those
modifications, The object-oriented modularization was predicted to be
most compatible with the users' intemal representations of the
software problems posed and thus produce the best overall performance.
A further expectation was that increasing structure would increase ease
of modifiability. Thus, the in-line code should produce the worst
performance since it does not have any structure. Both functional
decomposition and object-oriented design were predicted to lead to
superior performance.

These predictions are also consistent with the demands placed on
the programmers. The in-line code does not provide any structure to
the program; therefore, maintenance progranmers will need to build a
cognitive structure as they read through and try to comprehend the
program, The functional decomposition will outline modules for each
function and hence provide a starting structure to programmers;
however, the programmers will be required to redefine and integrate
these functions into the real-world specifications for the problem,
which will require some additional time for program comprehension. The
object-oriented code provides one module for each real-world object, or
design decision, in the system. The data and functions associated with
that object are already integrated in each module. This representation
scheme should allow for direct translation to the specifications, and
thus, should lead to maximm performance. However, a there is a
possibility that the integration of both data
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and functions within a module may lead to enough increased complexity
| to offset the benefits that should accrue from increased structure.
These hypotheses are tested in this research.
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METHOD
Materials

Problems. Three experimental problems and one practice problem
were used in this experiment. The three experimental problems involved
a military address system, a host-at-sea buoy system, and a student
transactions list; all were written in PASCAL.

The military address system maintained a data base of names and
postal addresses. From this data base, subsets of names, addresses,
and ranks could be drawn according to specified criteria and printed
according to a specified format, The host-at-sea problem involved
providing navigation and weather data to air and ship traffic at sea.
In this problem, buoys are deployed to collect wind, temperature, and
location data and they broadcast summaries of this information to
passing vessels and aircraft when requested to do so. The student
transactions list problem involved storing and maintaining information
about students through a transaction file using the data structure of a
linked 1list. Copies of each version of the three problems can be seen

in Appendix A.

Modifications. Two modifications were constructed for each
problem: a simple and a complex modification. The simple modification
required changing the program in only one location in the code. The
complex modification required changing the code in several locations.

Supplemental Materials. Each problem was accompanied by five types
of supplemental materials: a program overview, a data dictionary, a
program listing, and 1listings of the current and expected output from
the program. The program overview contained the program requirements,
a general description of the program design, and
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the modification to be performed for each program. Copies of the
program overviews can be found in Appendix B. The data dictionary
included the variable names, an English description of the variables,
and the data type for each variable. The program listing was a paper
printout of the Pascal code which was identical to the code presented
on the CRT' screen. The listings of the current and expected output
provided the programmers with the current output and the output
expected from a correct run of the program; this allowed them to
determine where they had gone wrong if their modification to the
program did not run correctly.

Desian

The experimental design used in this experiment was a 3x3x2x2
design based on Winer (1971, p. 723-736) . The within-subjects factors
were type or problem (military address, host-at-sea, student
transactions) and program structure (in-line, functional decomposition,
object-oriented). Type of modification (simple, complex) and type of
programmer  (undergraduates, professionals) were between-subjects
variables. Each programmer was assigned, via a latin square, to modify
three of the nine possible combinations of problem and program design
methodology. Each programmer made either three simple modifications or
three complex modifications. For example, a programmer might make a
simple modification to the in-line version of the military address
problem, the object-oriented version of the host-at-sea buoy problem,
and the functional decomposition version of the student transactions
problem, The order in which the programmers were observed under each
treatment condition was randomized independently for each programmer.

Pacticipant

The participants in this experiment were 36 programmers. Eighteen
of the participants were professional programmers; these participants
had an average of 3.5 years of professional programming experience.
Eighteen of the programmers were upper—division undergraduate computer
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{ science majors. These participants had an average of 0.2 year of
L. professional programming experience. Programmers were solicited
through advertisements and they were paid for their participation in
the research, All of the programmers had previous experience with

Pascal.

Procedure

Experimental sessions were conducted on an IBM PC. Initially, the
® participants were given a half-hour training session in which they had
to solve a sample problem. The experimenter also described the
procedure for using the text editor to modify the programs during this
session. This initial part of the session demonstrated the compiling
and program—checking sequence. The participants were first asked to

@
enter the changes from the problem discussed during the training
session. This was done to familiarize them with the operation of the
experimental system and its editor.

L

Following the practice program, the three experimental programs
were presented. An interactive data collection system recorded the
participants' responses throughout the session. The system recorded
each call for an editor command (e.g. ADD, CHANGE, LIST, or DELETE).
¢ From these, the overall time to modify and debug the programs was

calculated by suming the times from the individual editing sessions;

the number of errors made was also calculated., The time required for

compiling, 1linking, and executing the programs was not included in
o these measures. The programmers were required to continue working on a
s program until it was completed successfully or until 1 1/2 hours had
passed. They were allowed to take breaks between programs.

sl B o P oS S L M

After successfully modifying the problems, the programmers

® ,
completed a questionnaire about their previous programming experience.

q The information requested included detailed information on their )

1 familiarity with programming languages, operating systems, and program X

'. design methodologies. The participants were also asked about their |

educational background and the extent of their professional programming
experience,
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b Following the experiment, an attempt was made to assess the

e programmers' mental models of all three problems, An interactive
’:::::-:E procedure was used to elicit as much of the content of the code as the

:';:l::..-: programmer recalled. ‘This procedure was loosely based on Buschke's

" (1977) two dimensional grid procedure and it allowed the researcher to

A develop a picture of the basic units the programmer used to represent

:::Z:j_ the problem and the relationships among these recalled units., Both

:- number of recalled units and number of relationships were recorded for

o analysis. The recalled units were further categorized as representing

_ 2 primarily program slices or contiguous lines of code.

= —

LR Brofessional Programer Data

Modification Time. The participants required an average of 33

3-‘_‘:'_12 minutes to modify each program. This represents the amount of time

studying the program, deciding on the appropriate changes to make the

T modification, and using the text editor (i.e., the total time spent at

E{E::f the terminal less the time for compiling, linking, executing, and

_:Elj:j checking the program).

N An analysis of variance showed that, overall, it took programmers

e less time to make an simple modification (20 minutes) than it did to

e make a complex modification (47 minutes), E(1,17) = 128.16, p < .0l.

. The analysis also showed that type of problem significantly affected

S the amount of time required to make the modification, F(2,24) = 9.83, p

::QE--:: < .01, Overall, the military address problem required the least amount

o of time (21 minutes), the student transactions list required an

:',"{-‘3 intermediate amount of time (37 minutes), and the host-at-sea buoy |
..-‘, problem required the greatest amount of time (42 minutes). The main 1
:?_'i& effect of problem structure was only significant using a reduced alpha |
4\-5 level, F(2,24) = 2,60, p < .10, and it did not interact with any of the

I Tt other variables. Figure 1 shows the modification times broken down by

!‘-! problem structure and type of problem.
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Mumber of EJditing Sessions. FPor programs that did not compile or
run successfully, the programmers were required to complete another
editing session. The number of sessions required to successfully
modify the programs was calculated and analyzed. The analysis of
variance confirmed that simple modifications required fewer sessions
(1.5) than complex modifications (2.8), F(1,17) = 9.67, p < .01. No
other significant results were obtained from this analysis.

Mumber of Editor Transactions.  The number of commands executed
during the editing sessions was calculated and analyzed. The analysis

showed a significant main effect for type of problem (F(2,24) = 14.07,
p < .01), The military address problem required the least number of
transactions (14), the student transactions 1list required an
intermediate number of transactions (37), and the host-at-sea buoy
problem required the greatest number of transactions (43). In
addition, the simple modifications required fewer transactions (15)
than the complex modifications (47), F(1,17) = 36.73, p < .01.

Mental Models Data. The participants' mental models of the
programs were assessed by asking the programmers to recall as many
segnents of the program as they oould. They were then asked to
indicate what, if any, relationships existed among the pieces they had
recalled. The number of chunks recalled, and tbe number of relations
expressed were each submitted to an analysis of variance. Both the
number of chunks and the number of relations recalled were greater for
the complex (4.1 and 3.1, respectively) than for the simple (3.2 and
2.0, respectively) modifications (F(1,17) = 6.57, 12.19, p < .05,

respectively.

The professional programmers recalled predominantly contiguous
clusters of lines of code as opposed to program slices (£t (17) = 8.37,
p < .001). The mean number of program chunks that were classified as
contiguous clusters of lines of code was 9.5 while the mean number of
program chunks that were categorized as program slices was 0.8.
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Questijopnnaire Data. The post-session questionnaire contained
several questions regarding the participants' programming background.
The participants in this group were familiar with an average of 6.6
programming languages, 5.3 operating systems, and 2.5 program design
methodologies. The questionnaire also asked them to rate (on a 7-point
scale with 1 = not at all and 7 = constantly) how much they relied on
each type of documentation provided. The data suggest that they relied
most heavily on the program code (6.6). They relied on the program
overviews (4.8), expected output (4.1) and current output (3.7) to an
intermediate extent. The data dictionaries were rarely used (2.3).

Student Programmer Data

Modification Time. The student programmers required an average of
40 minutes to modify each program. An analysis of variance showed a
main effect of type of modification, F(1,17) = 19.67, p < .01, The
simple modifications required less time (26 minutes) than the complex
modifications (54 minutes). The main effects of type of problem
(F(2,24) = 5.12, p < .05) and of problem structure (F(2,24) = 5.79, p <
.05) were significant. Overall, the military address problem required
the least amount of time (32 minutes) while the host-at-sea buoy
problem (44 minutes) and student transaction list problem (45 minutes)
each required more time, Overall, the functionally decomposed code
required the least amount of time (34 minutes), the in-line code
required an intermediate amount of time (38 minutes) and the
object-oriented code required the greatest amount of time (49
minutes). However, there were significant interactions between problem
structure and type of problem (F(2,24) = 3.44, p < .05) and between
type of problem and ease of modification (F(2,24) = 5.07, p < .05), 8o
the main effect should be interpreted with caution. The nature of
these interactions can be seen in Figures 2 and 3,

Mumber of Editing Sessions. For the student programmers, none of
the independent variables significantly affected the number of editing
sessions required to successfully modify the programs.

-13-
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Mmber of Editor Transactions. An analysis of the number of editor
transactions executed by the programmers revealed a main effect of type
of modification, PF(1,17) = 11,58, p < .01, The simple modifications
required fewer transactions (18) than the complex modifications (35).
The main effect of type of problem was also significant, F(2,24) =
14.39, p < .01, The military address problem required the smallest
number of transactions (14), the host-at-sea buoy problem required an
intermediate number of transactions (30) and the studen transaction
list problem required the greatest number of transactions (36). In
addition, there was a significant interaction between problem structure
and ease of modification (F(2,24) = 3.82, p < .05). The nature of this
interaction can be seen in Figqure 4.

Mental Models Data. For the student programmers, the main effect
of program structure was significant for both the number of chunks and
relations recalled, F(2,24) = 4,23, 3.73, p < .05 for chunks and
relations, respectively.

The student programmers recalled predominantly contiguous clusters
of lines of code as opposed to program slices (t (17) = 5.42, p <
.001). The mean number of program chunks recalled that were classified
as contiguous clusters of lines of code was 9.6 while the mean number
of program chunks that were classified as program slices was 1.3,

Questionnaire Data. The participants in this group were familiar
with an average of 5.4 programming languages, 2.8 operating systems,
and 2.3 program design methodologies., Of the documentation provided,
the data suggest that they relied most heavily on the program code
(6.0). They relied on the program overviews (5.6), expected output
(4.9) and current output (4.2) to an intermediate extent., The data
dictionaries were rarely used (2.6).

-16-




LAl Sl il Bl Bed fed SagP SO0 RAL Aol oAl aite aanc " NP AEr Su Pdiiaint A A St i S el it S AR A S A A A G S RN e ST """"T

¥ SIMPLE
B COMPLEX

50
40
30
20
10

Number of
Transactions

In-Line Functional Object-
Decomposition Oriented

PROGRAM STRUCTURE

Figure 4 : The interaction of program

structure and type of
modification on number

of editor transactions
during problem solution.

-17-




.
' ARG

3

roeey
s

PR o g0 0 4
., v PR M S ]

ypewTw
O

DISCUSSION

The data provided by this research allow us to make several
interesting observations about the role that structure plays in
determining modification performance. They also provide insights into
the similarities and differences between student and professional
programmers.

The completion time data suggest that modification performance is
influenced by an interaction between the structure of the problem and
the type of problem presented. While this interaction was only
statistically significant for the student programmer group, the pattern
of results is very similar for the two groups of programmers. The
major differences between the two groups lie in solution speed and in
the effect of the object-oriented structure on the difficulty of the
host-at-sea buoy problem, The professional programmers modified the
military address and student transaction list problems faster than the
student programmers, but modified the host-at-sea buoy problem in
approximately the same amount of time as the student programmers.
While the object-oriented version of the host-at-sea buoy problem
required significantly more time to modify than the other versions of
that problem for both groups, the effect was much more pronounced for
the student programmers, leading to a significant problem structure by
problem type interaction.

For both groups, substantial differences in completion time were
observed between the simple and complex modifications. This difference
between the types of modifications was also reflected in significant
differences in the number of editor transactions for both groups of
programmers and for the number of editor sessions, chunks, and
relations recalled for the professional programmers. This suggests
that our ‘"complex" modifications were indeed more difficult than our
"simple"” modifications. This is not surprising since the complex
modifications required changes in several locations of the code while
our simple modifications required changes in only one location in the
code,
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For the student programmers, ease of modification also interacted
with problem structure. This interaction revealed that for the simple
modifications, problem structure did not influence ease of
modification, For the complex modifications, the functionally
decomposed code was easiest to modify, the in-line code was slightly
more difficult to modify, and the object-oriented code was most
difficult to modify. This suggests that structure, per ge, is not as
important as the particular type of structure.

;0

For both groups of programmers, there was a significant difference
in the completion times and number of editor transactions required to
modify the three problems. In all cases, the military address problem
was the easiest, while the student transaction list and host-at-sea
buoy problems were roughly equal in difficulty, and more difficult than
the military address problem,

The nature of the cognitive elements elicited in our free recall
procedure overwhelmingly favored clusters of contiguous lines of code
as opposed to program slices, as defined by Weiser (1982). Perhaps the
relatively large scale of the computer programs used in this research
made slicing of the computer programs too difficult, so that our
programmers used the simpler strategy of clustering lines of code by
continguity to form their cognitive chunks.

Differences between the student and professional programmers were
found in the significance of the overall main effect of problem
structure, For the professional programmers, the main effect was only
significant for the time data, and only at a reduced alpha level. For
the student programmers, a significant main effect was found for the
time, chunk and relations data. The time data suggested that
functionally decomposed code required the least amount of time, the
in-line <o¢code required an intermediate amount of time, and the
object-oriented code required the greatest amount of time, The nurber
of chunks and relations recalled was lower for the in-line version of
the code than for the functional decomposition and object-oriented
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program versions, which were equal on these measures. This suggests
again that for students, structure, in and of itself, is not
necessarily useful.

Overall, the data suggest that problem structure, problem type and
ease of modification all affect performance. Further, the data suggest
that while the pattern of results is similar for professional and
student programmers, the exact nature of the effect depends on the
group to which the programmer belongs. This is not surprising given
the profiles of the two groups. The professionals were familiar with
slightly more programming languages and operating systems while both
groups were familiar with approximately the same number of program
design methodologies. In addition, both groups of programmers reported
relying on the same pieces of documentation, suggesting some
similarities in their strategies for solving problems. The major
difference between the groups was professional programming experience,
with students averaging 0.2 year of experience (with a range of 0 - 1
year) while professionals averaged 3.5 years (with a range of 1.5 - 12
years) .

The data, taken as a whole, only weakly supported our initial
hypotheses., The data revealed that increasing program structure, as
represented by our materials, did not lead to increased ease of
modifiability. Overall, the functionally decomposed code was the
easiest to modify, the in-line code was slightly more difficult to
modify, and the object-oriented code was the most difficult to modify.
An examination of the reports from the participants after they had
completed the experiment suggested a trade-off between program
structure and ease of modifiability. Due to the fact that the
object-oriented code was the most modularized, this program structure
required more passing of information from module to module. It would
appear that the overhead required to keep track of the additional
information is greater than the overhead reduced by the increased
modularity.
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In addition, the effect of program structure on modifiability was
much weaker for the professional programmers than for the student
programmers. The main effect of program structure was only significant

for the professionals at a reduced level of confidence. One possible
explanation for this result is that one skill acquired in programming

e professionally is the ability to adapt to many different forms of
program structure,

The effects of type of problem and ease of modification were as
® expected., As many investigators have found, the three problems
differed in their overall level of difficulty. In addition, the data
strongly supported the hypothesis that changes localized in one area of
the code would require less time than those modifications requiring
@ changes in many locations in the code.

Overall, then, the data suggest that problem structure, type of
problem, and ease of modification all affect modification performance
for student and professional programmers, but that the exact nature of
the effect depends upon the group to which the programmer belongs.

-
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Host-At-Sea Buoy Problem
(Functional Decomposition)

FRlohaM r1as (ReCesver , Transmitter s {fdetbiug+) dlanesises i o
O
® 03
-
Cuiisl

Numper temp_sensors =

Number _to_avg = 53
A

@ Ty FE
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RECURD
Top 1 O.. 100
Dats 1 ARRAY
END;
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Stacthk : Storage_stack:
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FROCEDURE Start sensar si
BEG
ALEIGEN (Temp _aqeauge 1, tempinl.ir
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ASEIGEN (Temp _gauge I, tempomZaan
FESET (Temp _gauge 3 N

L
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FUNCTION incoming_reguest @ Reguest_tvpe:
EEGIN
READIN (Receilver, Incoming_recuest);
B

[
.2
)
{3
<
S FUNCTION Sense (VAR  Device @ 1 O _ Yyper : INMTEGER;S
BEGLN
READLIN (Device, Sensely
END 3
\ } 1
g i
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- FROCEDURE Cloch _ancrement (Yiam Sece 3 INTEGERD) 3

- BEG L
- Sece 1= Secs + 1;
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L
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FROCEDURE EBroadcast socsgs
L BEGIN

- WRITELN «Transmitter, 535 )3
gk END3

FROCeUhE whove vindo 3 INTEGERS

FROCEDURE Fush (Info ¢ INTESER) G
BEGIN
Wiir Steach DU
BEGLIN
Top = Top + L3
Data [Topl := Info;
END: € wath 3
END;
EBEEGIN
Fust vlnfo) s
END 3
3
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BEL LN
WITh Slech
BEGIN
HINE IV
Top
EiND g
ENDs
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CTopls:
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X
FUNCTIOGN Empty _stachk ¢ BULLEFRARMN:
BEL L
wlid Stack Du
IF Top = 0
THEN Emptyv_stack 3= TRUE
ELSE Empty_stack 1= FALSE:
ENLs
]
-
EEbliN
WHILE NGT Empty_stack DO
BEoInN
iFf Deratl tvpe = fAir 1HEN
Tramsmitber _speed 1= Fash
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END 3
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bos ¢ Set_sos 1= TRuks
Fir 3 Broadoas: detall vheguest g
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Templ = Templ + Sence (Temp Qauge 33
TempZ 1= Templd + Sense «Tamp _gauge Lo ;
EiNw g
Templ 1= Templ DIV Number to_avags:
Templ 1= Templ DIV NWumber _to_avags
Srove (Templog
Store (templr:
Omega 1= tenze (Omega_detect) s
Store (Uneaar s
IF (Seconde MOD 20 = O THEN
REGIH
Wind speed := Sence (Wind « geauge)s
Store (Wind speed:
Wind_dir = Sense (wind d_gadges s
store (Winad dir);
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IF (Seconds MOL 0 = O) THEN
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Wind dirg
ENDs
EHD
el T
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ENDy { DO NGV ALTER THISZ LIKE 2
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Host-At-Sea Buoy Problem
(In-Line)
FROSHAP Hes theoc&lver o Tranemiitter o} THowouge Flunesi1oe: 1 o0
.
<l
UL
Number _temnp sensors = 3
Nuambyer _to_avyg =
g
IhHE
Sturaye_Slechk =
RECORD
Top @ O Loy
Data ¢ ARRey Dloo 1ol OF THTEGER:
END
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I O Type = TEXT:
Fequest tvpe = (None, Scw, Socscft, Air. Ships;
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Trans _speed_type = (Fast., Slowss
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Seconas ¢ INTEGER:
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AR At e g Bt dad it i el ha® Jigh it !
Azratdy thecelver , wurrent _reguest) g
Ir Current request = None THEN
BEGTN
IF (Seconds MOD 10 = O, THER
BEGS N
1F Set_sos THEN
WRITELN (Tranesmitter, SUz )
Templ 3= O;
Tempd 1= O3
FOGR VAR Num = 1 T0 Number _to_avwg DU
BEGTI
READLN «Temp_gauge 1, Sencer
Tenpl 15 lempl + Senses
REHDLN «Temp_gauwge ., Sencs)g
Tampl 1= Templ + sanse;
EiND g
Tempi = lempl D1V Number to svogs
Tempo 1= Templ LIV Namoer bi asgs
WITH Stact DG
BEGIM
lop 1= JTop + 13
Data {Topi = lempl:
ENDY U wain 3
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BEGIN
Top == Top + 13
Datta (lop) 1= Temp.l:
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BEGLN
Transmitter _speed = Slow;
Into 1= Data (Toods
Top 1= Jop - 1;
WRITELN (Transmitter, I[n+o);

END;

Sosott : Set_sos := FALSE:
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L ll'v_":tr';H(J - Frivate Tricooa
Low_oprade = Frivats:
ek IF In sty ing - CJorreor al QLRI
Lww Qb ede s _0rporal
cLsk lf Inm =lrirno - Llewiotie: crdt
Lo Qrade 1= Lleatrenant
CLSE. e 16 Llraing Sargeenst Tin
Low aQreclder 122 Sargeant
cuse Ir dn wtranmg - Cabrledrn N STaa
LLlw _aF a2 Caplaln
Eize ir in ozivairng ¥ Mleoer T
COW G Ade 8 s AL
el IF In =trana = Loaohed VAL
oo gqpm 2D 3= TS0
R I TR

W e e L R . i
7 . S I TP L G SIS S S S0 P W SO I

cetal code, 2
ETukRN Tor sil: ;

_ovp. BNy DO
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el dr Al _s 1t ey - Ot el iy
Lov_grade 13 Denaral
ELSE

Luw Uradd 1= Ul fiwiig
END:
Vealird _grade 1= THRUL:
IF NOT (Low_grade IN [(Frivate..Oererall)
THEN Valiad_grade 3= FAalsgs
UheT . Valid_grades
IF NOD vHigh grace = General) TrkEi
REFEART
WrRITE (Franter, Enter haigh 0-orede, )3
WRITE (Frinmter, ‘o Just REIURI for sinigie G-Gradge: 3
REWMDLN CINFUT, In_string);
WRITELN (Frinter);
IF In_string = HULL THERN
High_grage = _Low_graaqase

ELSE
BEGIN

IF In_strimg = "Fravete THLid
high_grade = Frivate

ELSE [F 1In_string = Curpwr &l TriliN
High_grade := Corporai

ELSE IF Irn_string - Lieutenant Triciy
High_gtrade 1= Lleutenan.

ELSE IF inm_string =  serdgeant  THE
High_qgrade := Sergeann

ELZE 1F 1n_strang = Ceptain  THEW
Hiah _grade 1= Cavtatt

ELSE IF In_siring =  Fadws  Trikw
Hignh_grade = Major

ELZE IF In straing =  Jouluneld Trbiy
High _graoge 1= LCoionel

ELSE IF in_straing = GeEner al Priisva
High_grade :-= GCeneral

ELZE
High_greaoe = Unenicwing

END s

Valid_grade := ThUL:
IF NOT (Hianh_arage [N [Frivete..loneral iy
THEN Valid_grede = Lo
UNTIL Valid_grades
EGFile 1= FaiLSk:
WITH Cuwrr_record DO

EEGIN
READLN tDatau _+3le, Title s
IF Title ‘emeaw THEZN
E‘E\.‘A’N
FEMDLIN (Data +tile, (oSt foae
READLN «Data_r1lwe, oiven _rian s
RERDLIN tData_ f1ic, Br-nliiog
Pl (Daltla_tirie, Command.
FEADLIN «Date fF1ie, Street g
FEADLN (Data_f1rle, Cat v
ey it (DE‘L&\_Q.LLE. lated
NEADLIN (Dabte f1rie, Lountr g
FErlN W Dale tale, Ji1o0:
REmDLIE (Data _t1 @, oarass g
£
il SE
P 1ie 1= ThRuk:
il

ipe ztate Jurr recovrd,itgo:
wis L NGBS Lie DO
HelGIN

LFCUr . her L L. da k. e D3 e
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Wurr _record.br ave = Low_gr ader  ARND
(Curr _reccrd.Grade = High_graages THEN

BECGIN

IF NOT (Cwrv _recorc.zip = Z1p_stater THok

Bk i
WRITELN (Fr
WhITELIN (Fr

WRITELN (Frinkber)

WRITELN Fr
WRITELN (Fr
Zip state :
clp_count s

END3
Zip_cuount = Zap
Case Cwr_record.
Frivate @
Corporal
Sargeant @
Lieutenant 3

Caplain
Major
Colonel @
beneral
EiNDs
WITH Curr record
BES [N

wrITE (Franm
tnde:: s= 1:

inter s

inter, ‘Totel +or zap « Zap stale,
2, Zip_countyg
H
1Nnter s3
1ntet s
= Cwrr _record.caps
= Uy

count + 13

Grade ot

Fvt count 1= Fvo_count + i
Corp_count = Corp_count + 13
Sgt count :# St _count -+ 1
Lt_count := Lt_count + 13

Capi_count Caplt _cournt + g
Masjor count = Major_count + 13
Coi count = Col_count + 13

Ger. _count 1= Gen_caunt + 13

Lo

ter, Jitle, biand 3

WHILE Given name [Irnuce. ] Elent oc
B i
Welle Franter, BGaven_name [lndeslos
Inde:: = Inde: + 13
EiND 3
inde . 1= Inde. + 13
iF Givenrr_newunm2 [ lnde 3 . * then
BEGIN

WHhITE (Franter, Blani);

FOR Inde:I 1= Index TUO OFD (Grven _name.iBl o0

Wk ]
END;

TE «rFranter , Gaven_tiame [inge  230:

WHITE (Frinter, Blank, Lazst _name g

WRITELN (Fr
WHITELN (Fr
WHRITECLH (Fr

1nter )
1nter § bBranct)sg
1hter, Command:;

WRITELN (Frairvter, Lity, e 0 Blero ¢ Ztate.;
WRITELN (Franter, Country, Bletn  J14-3
WhITELN (Frinler s
WRITELN (Frinter s
Wr LigEls «Frinter v
Wi TELN (Frainter s
Wh1TELTe \"r'rlr»tz‘;'r/:
EMND:
EZriles 3= resb>oe g
Wi i oCurr e or o T
Eoirabe
Pobrmeid voambla v1 e T340, H
T inies [ ER XS BRI
BL o1
Feraln ol v Us T hie . et ooy
i e flle, a3l e i 3
REsaltbdd 2 Devie tl i Brancho s
N ieiond v oaCa_Fliw,e Lummaios 3§
Fbwln N Detla $1le. ZTireet g

Fllebioe vioaba t1le, Ci1nm.s3
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READLN (Data _+1le, Counbtry);
READLIN iDeata fale. Zipog

-

REWDILN (Data_fi1ie, Graos)g
" END

tlf1le = TRUE:

=N

=iileg
WhLTECIN rinmvter s
Wh iTeiiv (F anter Total +or Cap « L1p_statle, : » Zip_counts g
Wi I TELN (Frinver b g
wrlteEoin WFrancber g
WRITEZN (Frinter s ﬁ

FOrnn Thnis_arade 1= Low_greae 73 Hiogh grade DO
{F This _arede = Fraivate [HEN
Tikedd vrranter, Joutal for Frivate 1
vk _count)
Foihis_agrade = Corporal THEN
TELN (Frinter, "Total +or Corporal 15 . !
Corp _count)
ELZE [F Thas_gradge = Sargeant THEN
WiciTELI Franter, ot el fOr Dargeant 1
Sgt_count)
BELZe IF Thie _graue = Lieuwtenant THE
[TELH rinter, Total +or ifleatenant 13 . i
Lt counmty
EiosE Ik This_arave = Captairn THEN
wrlielid cbyaanter, TOlal fuf Capiain 1= ,
Lapt _cawnty
Leze if Tl Jredwe = Pleadar iy

£em
b1
-4 -

n

1

wh TR rrraner, TOUaL tor s iois 1

g
A

Slaaor counit
medt I Tins arade = Colonel TRl
Pitv I T aid vF e 3 ber o TJolali tor (Ciunoi 1 R
—Ql _zoune
Coese If Thias arause = General THoN
whiikbild " trincer, Total for Leneral 15 N
ven count *
CLslE s ata fuilers
CLU-E Fruinmter i ;
CLODE CINFUT) g
ooxee DU ONULL el
El.

EF Trls CINGE wer ST SIGH G Puleadn T R eWRITE R 3 Qe il r v
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Military Address Problem
(Object~Oriented)

AOCRr Viedds wwale Fliais, brlnter, lnputo: Lidervgt. WHlltiezioc
.
J
;
Luiva T
Bl ar = H
T Y F e
Oy U _LvRE T AFrivate, Corporasl. Soraeant, Llentenant,
Coaplain, Marair, Colons.: . Gerneral,
Unibncwiv, NOHe, w110
Zip_btype = LSTRING KR
<
5
RERERARFFRDIAPARI R PP ERRNARRERFE RS L ERRP F R PR PRI RIPRAI P TRy o
DieaBEC T Frinter ublect trettakagrranrsrkarrrea N ARRR LR,
y
=T
Fraonter 3 JE»T3
s
FROCELURE rRllvion . _Upen_pranter s
BElie
REWriic wWFranter);
EiDs
Bl
s
ARBIRRARA D IR RARRIRI P PP AP RIS RAFRDIBI AP S P S RES R RP PP 2 PR TR RS |
ST OT s Jdeser 1npas GEJECT ARATCRARERARARARRAAAARS R XA RS X &
N
p
Mk LE T T L]
Low zip, High zip 3 Zap types
Low_grade, High_greade : OGrade_tyeoes
s
”
s
FROUEDARE LSDER _Seiect criterias
;
T F o
Strarnyg o Lvpt = LW tb bl vy
v !
v =sraine @ Sirnu Ju Tvpls
.
RN IN TR 2 S A S S St R A :
vinshreng L.pes
e [CR .
ANEN O]
b ar=vrong - Frl,ate ST
D osE Frisats
- CLwe It anstrig = Corporzd T
~ot= Zorpor

st rng

e W_UN W WL LN s e \‘v
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- R "D WIS AT T &
;‘i ELSE IF Iniztrng = " Sargeent I HE
N G 1= Sargeant
e Erte IF Imetrog = Captarn ARSI
~s G 1= Lagtain
ELSE IF Imuirng =  WMasor THET
- G 1= Msjor
i" ELEE IF Incwtrro = Colonel T HL
- 5 = Colaonel
- ELSCE IF Instrig = General THEN
5 1= General

T
i

Lmb mown H

v END;:
.
".- CT
- i
» O
-‘f'} Pl TION Valad_cap (2 1 Zap typer @ Boloonlig
- LS

y BEGIN
Valid_cip 1= Tiubg
FOR VARl Indes 3= 1 TG GRE 200w Do

I NOYT 2 [iImdedd IN L o o0 5 0 Liafa g

R ThiN vValia_zip 3= FaoZis
o END;
o v
- FUNCT TUN Valid_graue (G brage tvpe: @ DOloewba
- v
SRS FEili
':fi vailo gr ase tF o TRUEG
o IF 107 ve I fbrtvate.s s 520w 21 30
THEW Veldld arade - Feslong
B
;
.-
BEGLN
REFEAT
iow Tip = NULL:
Whiie (Franter, Erter Jow post.os Coe, e
WRITE (Frimber, ot oJusal RETLEN foor il e
RedDON vty bow_zapors
WEITELN (Franter g
UNTIL Vealid_zip WLow sipts
IF NGT (wcow_zi1ip = NULL TekH
‘ REF E543
AN Haghy zap = NULLC:
s WRITE (Frinter, ©Ernter hlon postal oG, _
' WRITE (Frimbwer, S st BEVUR G ¢ Lt sitei i 3 UBL A
BN READILN (ITF L. maan ripss
R WR I TN oFe cotesr
“ WITIL Valila . IO S s
. it Low _Zi1p = poee Tkl
3 HEc i
Low 1o HE H
Hiagih 21 3= Trw gy tSar o0 g
£ L
oo IF o oraab_Sopor oo e
Huigb _zip - o Sl
Fhh et
LOw Qimalt 8% Dhoetie g
Hian _arads 17 cwehes
wWhiie wrirntar Bl low O ue :
we bl P eanoee, L B L L A A ol
SN S E I N | N U SN SR A SR
s il P e H
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!
ir Ly =0t deed = e e i
-~ S -
Btiu 1IN
' Low_grade 1= Frivate;
: Flgn_grade 1= Gereras s
' END
Bk
[ Convert 1nstring_to _yrade_ovpe (In_strana,
l. Low arade s
\ Vail1a grade (Low _grade:';
b Ui awrigh urave = Generaly THEN
{ SEAT
WHITE (Franter, Enter high O-Greoe, I
WRITE (Frimfter ., ‘or Just REIURN for single 0-Grade: H
L AEADLN CINFLT . In_stringo
WHRTTELN (Frinier) s
IF Im etrang = NULL THEN
b Hiagh agrade 1= Low_grade
{ ELSL
Conver t _angtring_ to grade tyvpe Cin _string,
@ Higlh arade s
Ui L Valrd gr s oHuigt _arades s
EI<L=
-
L
. . RREPRRERRREB I ARARIRRARFIRDE R PP ERREI AR ARPRRARER BRI KRR BRDI NS PSP n
b .
< CoezCos File oLt RESFARERRAREEPAERPPF P ERARF TSRS RS
-
S
® Siraing 4 tvpo = Loingidh cdos
Pereg L Lers2 F o owoieediba b
Lrang iDL tvpe T oeTSieclias 1D
: Ctype = oLobinfoes ol
<
® o
File structure = RECGL
iltle @ Straing < types
Last oane @ String_ 19 tyoes
Gl ven Deobe = Sbrang 200 types
Branch ¢ String_Ju_tvpes
Command 3 Swring Ju_t.pes
- LDrreen @ String o Lypes
Citv = Etring 0 tepes
state @ Soring Do typead
Coantry 2 Strainu 19 tvpes
Jip ¢ J1p_UvpeEs
Ot cger & Uroue b opes
L 4 el
L SRS N N
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FUNCTION FILE__Find_maton 3 BOOLE g
VAl Edrile @ BUULEw:
FUNCTIGON Matcres : BUOLEAN;
BEOLN
Matches 1= FelLSE:
IF (Curr_Record.Zip = Low zip) AND
Lurr _recoro.Zip o= High oip) AND
(Curr_record.orade = Low _grade) ND
(Lurr record.Brave = High_grade)
THEM Matches := TRUE:
ENDs
FEGIHN
EdFile := FALZES
WITH Curr _record DO
EEGIN
REFEAT
READLN (Data _f1le, Title:y
IF Titlie - . »%a®’ THEN
HEGIN
READLN (Data _+1le, Lact named:
READLN (Data fille, Dulven cama g
RWEADLIN (Data_+t1le, Br anciisg
REMDLN (Data_ti1le, Lanmand: g
READLN (Data_+1le, Streel’;
FEADILN (Data file, Cityis
HERDLN (Data f1le, State
READLI (Data +1le., Countrysg
REWDL WY (Data_41le, Z3f 03
READLN (Data fi1le, Grade
END
ELSE
EOFile := TRUE:
UNTIL Matches OR EOF1le:
IF Matches AND (NUT £0F 1 les
THEN FILE_ _Find match 1= TRUE
ELSE FILE__Faind match 3= FOLEES
END;
END:
FUNGC IO FILE . Send istle : Svrana 4 ¢ opeg
Ftisjid
MeE | Dend Tatle 1= Loy vrestiadinrtie:
END ¢
PUNCH IO FILE  zenig_dwst tieme 3 ozdiriaG Lo T ey
BLGOIN
Flle oend_lect niaie 5= Lore roclra.eest mah g
EMNL
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1w BEGIN
FILE  Send_givet. n
{ EriDs
\

. (B}
Ve L
W~ :
.
. [

n
£
o
-
[2X]

UN FILE  _Seno _branct

j. BESIN

~ FILE __Send _pranct
L END;

-, s

FUNCTION FiLi_ dend_Lonmand

FILE__Send_ coummanu

-1

-

Foii Oiv FILE_ _Sernid City

[

G LiN
FILE _Sernig_caty 5=
ENLU 3

FUNCTIOH FILE  Send State :

FodCTION FicE  sendg _Jlounur,

-y
FILE SEHU'CUuerv

FUNCTLUOW FiLE  send _raip @ Z

BEGiT:

FlLidl TION Flod __ 2werad yreaoe 3
cEL LY
Ploet oG sle
Erei :
Thwdecwune ok Llwse 11 ie o

K.—C s
CLUTE voata Yia
CMNL:

Y

ame 3T CUry _reEcdr .ol Jen_f

t Thrandg Ju_types

t= Lurr_recora.bBranchy

: Straing_ JO_types

15 Qury _recor e wfivnanidng

Stflﬁuwlo_tvpa;

Curr _record.City;

Slrang_ I Lvpes

= 0urt reECOro. st ates

f Serava_ 1%L e

3= Curr record.Countr vg

1p_types

Curr record.lips

Gr age Tvpes
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-
. oL s Cabel obiect REERRRE P FR OB AR D AP I IR
o
L
FROLEDUNE Lrabbi_ _Frant Labeds
-
Lo
Fulde Tione Janvert _oiver name - liem 3 Srring_du type
: o Suring_Cuw_tvpes
<l
RSN
temp 3 Stranu_ 2o tepes
Inde.: ¢ Integer s
.
Eb i
Temp - ML
Ilnde = 13 |
X wWHiILEL Itewn (Indo J By owier o D
! EELOLM
. CONLnYT (Temw . l1iten Llnge. 303
- Inage: 1= [ndes +« 13;
b EiND g
t“ inde 1= lnde. + L
1F «Item [Inde: ] x5 THEN ?
f, Beo i
. CONZmT viemp . EBlard g
- REFET
- CONLrit Temp, Ttem (Inde . dog
lindes ¢= (nae: + 13 d
‘. WETIL Cish o lnoe . ltew s
- END: L 1¥
-_" Cunvert Q) vel e 1= Temps
; Eiivs
s
-
L. «
BEECiiN
WHRITE LG (Framtor, Flie  Seno_titie, Elain,
Canvert _gilven mame Floth | Send Ol vee damer,

Blent 4 FlILE __5':"'\.1. last ticonw g
WRITELN (Frainker, FLCE  Send by anctio g

Wivileihs vranter, FLILE | Sevd_cOmmainio g ‘
WL ELH Franter , FILE  Send 1oy, . o Pl mena stanod

Whildin trranter, Flie _Zenu counir ve Baeni o Fave | mend 1003

WD TIZL Frinter g

wWin {TE L4 cFranmter g

Wit L tie b a0

VEwdd trrinter

-r
P .

b

&
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— e

L S I R U P I B A S A R A= S
(SR T
.
"
o
. BP PRI AANR PP R P I P PP PAPRAE A PR IRTP RSB PSSP RPN
N YO T T R RSN TSN L R TR enNBpaseRrItPrRREARREIRARRIERARREEROS '1
o
.
PAZ1 A TR R A G
fovl LW ile Luad o osaind ¢ 207wt
. . .
b DR Ao TR WS VR 16 B S L] R S R Sannbi . {
¢ Db oottt te ot . S N A S
- .
. - - - . - - . - - - .. . . . .
ST ey . - MRS . B S .
P S I RY SF T RN RT, PRV PP SOSAL S TP T SR SN S0 S iy W V.




pU—— — et e s aa ve e ek s St s St Sgh i M-SRl s
Lljs  =mlmin LI S N
oo
{0
o,
0
N
W
FROCEDURE COWMITER __Imitialize _counter sy
o
BEGIN
Fet _count 3= g
Corp_count = u;
Sat_count = Oy
Lt _count 1= O3
Capt_count 1= wujg
Major _counrt. = O3
Col _count = 05
cen_count 1= uj
Zip_count = w3
END:
ol
-7
-
i
-
LR
FROCEDURE COUNTER_ _Set initial Taip statey
{s
BEGTIM
Zip_state = FILE _Send_zip:s

v Py
A P T T I T

Ty VeVvYY

)

FROCEDURE COWNTER

FROCEDURE Increment ar a
BEGIN
Case Luunter

__Incremet_cco

LN er <3

Q& counter

Frivalte 3 Fvit_count
Corpaoral : Corp_coun
Saryeant 3 Syt _count
Lieutenant : Lt_count
Captain : Capt _coun
Majlor : Major_cou
Colomnel : Col _count
General : Gen_count
END;
END 5
EEGIN
IF NO1T ((FILE  _Send zipyr = Li1p_stal
BEGLH
We lTELIN (Frainmter )
WhITELW Franter . Total tor
s « Ll
W ITELN (Frinter /g
winl lellM (Frainter @3
WRITELN (Frinmter )y
Zip_state 17 FIuLl  Zweod _Zipd
Zi1p_count 1T g
END g
Jip_cowt ¥ Lip count o+ g
[ncrement _grade_countars 1tk
EiND s
-
<l
FROZETHE Loitibe™ | Frant aroge Luiar et
A e e e el T e
DA Y A S R S S P A N R G PN SRR WL WS R Y N

VLot e

t

t
nt

et

Lip

_ EYETR ot Y LA RVE

oF Aue _type s

Fvt count + 13

= Courp_count + 13
gt count + 13

Lt _count + 13

= Capt_count + 13
Major caount + 13
Col count + 13

Gen _count + 13

@
i

THEN
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Total:
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g Oradie @ orave _types
FROCEDURE Frant _thie total
(Grade_wtiring mur s
Total : INTEGER) 3
BEGIN
WRITELN (Franter . " Tateal or
Grade_suring, EX .
END;
o
Brolh
WreITECMN (Franter )
WRITELN (Frinter;
WRITELIN (Franter s
FOR Thnas grede := Low agraae 10 Hiaob ar eve U
IF Thas_grade = Frivate THEN
Framt this_total o Friveate « FoU C
ELSE IF This grade = Corporal ThERN
Fraint_tnie_ total o Lorporad « Lorp
ELSE IF Thiz _arade = Sarageane THEN
Framt this total « Sargeant . Sutl_county
ELSE IF This _grade = Lieutenant THEN
Frint trhis_totald « Lieuwlenant , L1 _county
ELSE IF Thais_grade = Captarn [Hkl
Froint thie _toteai ¢« Laptarn o Lapt couorne
ELSE IF This _agrade = Major THEN
Frant_this_total 1+ Major W Mecdor
ELZE IF Thiis _grade = Colonel THEN
Frimt thas totel o« Coloned . Loio_ca
Ei_stE IF Tras _grade = General THEN
Froaamt this _total  General Ca e
il s
Ny
N PE P BEP PRI RAEPRNRRRARP PP FIERARARREREERRPAREPRSARIRAERS AR SRR P
23
N rrecoeeatt MODDE ;
VYaR [STATICT Continue @0 EBUOCE R
F o3 teqth; ( Lo HOT slter this line
v’.J‘
)
EEGir
FILE __Opei _filiesy
FRINTER__Upen_prinbters
CUOMTER _ Initiallze couniier o
JSER | Select _cricers i
Lontairnue 5 FLlLE__Find_meto g
COL el Sen _wnrtral _sip sbetag
whill.& Continuwe DO
Bloolts
COUiiey  Increment _Lournter =3
L. Fracn paue s
contarnwe 2= Flile Fand mation
tidb g
whorreils Franter s
Wi bibiie RFrsater, Toted 400 oy Lo Ll €tz H .
CLUNITER Fyoant_Ggr-sge_toval =5
clul_ _Liose riiewy
. o rwn Lo Ut ridter Thiae caiie L SSAGie ~abes D :
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Student Transactions Problem
(Functional Decomposition)

TvFE
Name array = P& D Aoy Do 28] OF Cikbg
35 _arvay = FACHED ARRGyYy (1..101 OF CHARS
Lank = (Ublect;:
Cbiect = RECURD
Neno o Lant g
Student_noaing 1 Tand_aryav;
Swcral _seswrity 3 S5 _arv av;
END
Vb

For o dEaiy O Do NOT alter this (10
Fermiile 3 TEX

13
Ireaenstile & TEXIZ
Frin_er : TEAT;

Commenid ¢ CHesfs

Namz 1 Mame _arravs

5% number @ SS_arrav:
Colunn 3 INTESER;
Fairstl @ Lindk:

FROUEDURE Shap lines (How maiiy ¢ INTRoo R

BEC

[

1id
For index 1= 1 TO How manv Do
WRITELN (Frinter )

END

FROCEDURE Feaau da*a_i1me "vmm w12l 8 TExTg
i
Civ o2 Cirdeales
EEolid
F\EHL‘ ol ‘. iw, o Dot rd o g
Figls 20w, ¢ e U e L

el
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END: }
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BEGIN
O 3= First;
Foe= Frest JNe tg
Found 1+ Ful.Scs
WHILE «F . NIL» AND (NGT Found) Do
IF F .Student_name = Name) nND
(Frubocial eecurity = 55 _numbier
Fi Found 0= TRUE
el
BEGIN
e
Foe= F .Next;
END3
EMD 3
FEROGLEDURE Add _students
ATSTIN
Coe F ¢ Lanig
Duplicete ¢ ROOLECANS
Ay YT Llnkg
FRUCEDURE 1Insert oiter (Arter _thuz @ Lane g
Vit
Temp ¢ Laint s
BEGIN
E NEW (Tenmnr s
P Temp .Student tname = Name:
[+ Temp .Social_securibty 1= 55 numbarg
P Temp .Next 1= Atter _this .Nexls
y Aibar_trhils Jhext 1= Temps
END s

FLINLTION kEmpty _laist 3 BOULE NG

INCMONENIENE 4

BEGIN
ir Firet et = Wil
THEN BEmpty li=t 1= ThRdk

)
v -

; N ELSE Empty_lizt 3= FALSE:R
- END3
2005
r - < 2
SO, .
. beaiiid
- @ it Empty_list THEN
5 inserc_after (Flrst)
Ei b
BEGIIN
DEarch WWupiitete, A, 10
IF Dupitcane TRHEG
BEGIN
Shap b s
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Duplicate recourou: hui Addec

. END

. ELoE

g EEGIN

X 0 1= Fairsti:
. For= First JNents

] @ IF Name Fo.Stuoent _name THEN
2 Insert_atter (First)

2 ELSE

- BEGIN

" WHILE \Name - F .Student_name: AiND
- FouNest . NILY DO
. EGIH
8 O BEGIN

Q 2= 3
. Froes= O JNewxts
N END;
. IF Name Fr.Student name
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@
END;
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ENDs
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Freceeoing Ne .t = Actual JNe:st

2 ELSE
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ELGIN

L M

Ship _lines (1)3
WRITELH (Frinter, .
‘Student ot 1 Clese: No drop done. /3
END;

END
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END
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ISTETRY
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BEGIN
G s= Farst:
F o= First JNests
Stip lines (13
WHILE - NIL DO
BELIN
WhITSLN Franter, & Jotada2nt foble .
F .5ocial _selaritvss
F o= F ,Net;
END 2
EiNls
FROCEDLRL Error i
BuCGIN
Leap danes (1
WRiTECTe tFroanter
Invalild comnand. Line +rom Lty ansactl on .
file 1gnored. s
Eiils
~J
FROCEDURE Read _1n_permanent _+1leg
A
BeEGIN
RESET (Fermtile)
Fead data _line (Fermfile,:
WHILE NUT BEUF (Fermfile) DO
BEOGIN
Aod students
Reao_dabtae_line (Fermérls:g
END:
CLOCE Jermfiic,:
ENL 2
FROCELUNWE deve permancib_tile,
i
G F i1l

BEOIN
FewhI i, tFermry le: s
4 ss Firsus
Fos= Farst e L3
WHILE - Wi Do
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END s
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NEW (First);
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Student Transactions Problem
(In-Line)
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Fownd 1= FhALDe:s

wHlolE o Nae o rnd, A NDT Found) D
[F W JBhuoent_rname = Namesr ~ND
v W S0Ciel _security = 85 _riuaebier
THe b Fownd 1= TRUE
EL ok
CEGIN
G 1= Fy
Froa= [~ JNe:ts
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IF Foundg THEN
ST NEH N
WhiTelli (Frrainter 'y
WHITELN ‘Frinter ,
- ‘Duplicete record: Not wmudded )

. U 3= Firsti:
L o= First JiNexts
- - It Neame - F .ztudent_name Jhiid
PR BEGIN

L NEW Temp) s

v Temp .Student name 5 ddmes
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Temps JNe:nt = Fairet JNests
First JNe:l = Temgs:

BEGIN
WHILE (Neame oS iuoent Nevoo
alND o UNent NI DU

BEGIN
. U oe= Fyg
.' F O JNe:ntg
END3
IF Name FoooStuoent _name THEN
BEGIN
NEW (Tempo g
Temp .Student fname 1= HNaink §
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LA d END: '
ENDs
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Whiick (Name Fro.Stuoent _nama)

MDD U e el Ly
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U= By

Fors o ow L iNeuwts

EnNDs
IF Name
BEoIM
INEL W
| &My
Temnp

Fo.Sivdent _niame THE

.
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CTemps )
LStudent _name

securtity

Nein

L BoClal

:= S5 _numuer
Temp .Ne<t 1= F° .he:ts
FrooNest = Temp:

END
ELEE
EEGIN

NEW (Temp) g

Temp .Student  ram:s
1= Namery
Tenp .Soc1al_secwr ity
t= 8% numtier s
Tamy JHest 1= U ety
U JNe«t 1= Tempg
Eib
EriDs
Enilg
ENL S
D s
[ s LEOGLN {
{1 2= Firgoig |
For= Firrso JNeoty
Fournd = FALST
witliE F Iy AN et Founas DO
1IF (F J5tudent _name = MName Ao
(F .Suciel_security = o= munber)
THE Found 1= TRULE
ELSE
BEEGIN
0 = k3
Fos= FoJNest s
EnNb
[F Foonad TiHEN
O .lMe  t o e= F JhNe: t
EL3E
Bec i
Wi TECL Franter )
WRITELY (Fraimber,
stugent et 10 CiwmEsl .
D Airop J0ne. s
ENg
EMND
{ s PECEN
s = baveaes
s Flrst oive. L
Pownd 1~ Pl oy
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1IF Found ThEN
REGIN
WRITELN (Frimter .,
WRITELN (Frainter, MNamo,
1 1mn the record. s
EMD
ELSE
BEGIMN
WRITELN (Framter iy
WRITELN (Frinter, Name,
1e NOT 100 trne record, g
END
ENDg
L : BEEGIN
L oe= Farast:
Foe= First JNe:st;
WIITELN (Frinter
WH1i.E F NIl DO
BEGIN
W1 TELN (Framler, B .otugcnt name,
F .Soccial _secuwrluvo g
Foos=  JNe.Ls
END:
END s
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IF WG (Command IWN LA, Lo I, L3 THtiv
BEGIN
WihiTeELN (Frainmter s
Wik LR tFranter
Inval1d commarniu: Line 1rcm Lranisattl o
file ranored. s
ENL;
Fowl (iranstile, Conmatd: s
FUR Colamn s = ZOT0 Ze LU
Bel il
Feml (Tramnesfile. Chios
Name LColumn - 11 1= Unhg
END 3
Fahh Ccolumn = Z7 TO 45 LG
I ERER e
REASD (Tramet1le, Liirg
S5 _number L(loiumn - 251 1~ Cing
ENL g
FEmDLN (franefaled;
ENDs
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REWHITE Wermfrle);
C 3= Firstg
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Student Transactions Problem
(Object=Oriented)

FROGREm Lioszizet Feramfrla, Transriie, Franter: dacbagl filrnesioes s S0
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TyFE
Neme type = ok ED ARRAY 1. 753 OF Cidrsfos
EC tvpe = FeibED ARRmy (1. .10 OF CHARS
3 s
£ N
0
-
Vb
For TEaTs { Do HNul alter this line
Name @ Nane tvpes
PY % number 1 &5 tvpes
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ENDg
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ENDs
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END 3
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BEGIN
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ENDs
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Insert_atter (Firgt)
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Willie (Name oL Etodent name s el
IS A FTESNR vl DU
Etwl
(I O

b
IR

v Ivame Pz LSl Dieale:
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PROGRAM OVERVIEW
Host-At-Sea Buoy Problem
Functional Decomposition - Simple

REQUIREMENTS

This program was designed to simulate a real-time system. It
concerns a bouy which provides navigation and weather data to air and
ship traffic at sea. It collects wind, temperature, and location
data, and transmits summaries every 60 seconds, or more detailed
information whenever requested by a passing plane or ship.
Additionally, in the case of an emergency, it may be told to broadcast
an SOS. It will broadcast this SOS every 10 seconds until it is
turned off by a separate request. Each bouy has a small computer, 2
tenperature sensors (each one at a different depth), wind direction
and speed gauges, a location detector, as well as a receiver and a
transmitter. Sending an SOS is considered of highest priority, then
air and ship requests, respectively, and lastly, the periodic
transmissions. To maintain accurate information, readings are taken
from the sensing devices at fixed intervals: wind sensors = every 30
secs.; Omega (i.e, location) = every 10 secs; and temperatures = every
10 secs., (5 readings are taken and averaged so to get an accurate
determination at each depth). Each sensor reading returns an integer
value, Also, the baud rate of data transmission varies depending on
whether a ship or plane request was received, due to the time limits
of the craft in the vicinity.,

DESIGN

This program was broken up into 8 modules. The main process of
the program reads in the measurements taken from the five gauges,
processes requests received through the receiver and subsequently
directs the data to be broadcast by the transmitter., Five of the
modules are the processes that take measurements from these gauges.
The other two modules are the receiver and the transmitter modules.

MODIFICATION

It has been determined that your wind speed guage is inaccurate.
Each time you are asked for the wind speed, read the wind speed guage
twice in a row and average the two readings to obtain your reading.
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PROGRAM OVERVIEW
Host-At-Sea Buoy Problem
Functional Decomposition - Complex

- REQUIREMENTS

oo This program was designed to simulate a real-time system. It
concerns a bouy which provides navigation and weather data to air and
\ ship traffic at sea. It collects wind, temperature, and location

5 data, and transmits summaries every 60 seconds, or more detailed
information whenever requested by a passing plane or ship.

Additionally, in the case of an emergency, it may be told to broadcast

e an SOS. It will broadcast this SOS every 10 seconds until it is
o turned off by a separate request. Each bouy has a small computer, 2

¢ temperature sensors (each one at a different depth), wind direction

and speed gauges, a location detector, as well as a receiver and a

transmitter, Sending an SOS is considered of highest priority, then
air and ship requests, respectively, and lastly, the periodic

[ transmissions. To maintain accurate information, readings are taken

'R from the sensing devices at fixed intervals: wind sensors = every 30

‘*-1 secs.; Qmega (i.e. location) = every 10 secs; and temperatures = every
- 10 secs., (5 readings are taken and averaged so to get an accurate
L determination at each depth). Each sensor reading returns an integer
S value. Also, the baud rate of data transmission varies depending on
s whether a ship or plane request was received, due to the time limits
e of the craft in the vicinity.
L
SO DESIGN

- This program was broken up into 8 modules. The main process of
- the program reads in the measurements taken from the five gauges,
processes requests received through the receiver and subsequently
directs the data to be broadcast by the transmitter. Five of the
b~ modules are the processes that take measurements from these gauges.
[ The other two modules are the receiver and the transmitter modules.

::,1'_‘: MODIFICATION

| & | ;
WS If the temperature and wind speed guages have some sort of error
.:f'.-j (mechanical, electrical), the circuitry associated with it will return
b the integer 999, 1If the temperature guage returns 999, you should pot
-I:--I count that figure into the average for that averaged reading. (In
b other words, do not add 999 to the accumulator, and subtract 1 from #_
." i TO_AVG.) If the wind speed guage returns 999, continue reading the
= £ guage until you get a reading other than 999.

-
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'. PROGRAM OVERVIEW
Host-At—-Sea Buoy Problem
In-Line - Simple

REQUIREMENTS

: This program was designed to simulate a real-time system. It
© concerns a bouy which provides navigation and weather data to air and
: ship traffic at sea. It collects wind, temperature, and location
data, and transmits summaries every 60 seconds, or more detailed
information whenever requested by a passing plane or ship.
Additionally, in the case of an emergency, it may be told to broadcast
- an S0S. It will broadcast this SOS every 10 seconds until it is
@ turmned off by a separate request. Each bouy has a small computer, 2
temperature sensors (each one at a different depth), wind direction
and speed gauges, a location detector, as well as a receiver and a
transmitter. Sending an SOS is considered of highest priority, then
air and ship requests, respectively, and lastly, the periodic
. transmissions. To maintain accurate information, readings are taken
e from the sensing devices at fixed intervals: wind sensors = every 30
secs.; Omega (i.e. location) = every 10 secs; and temperatures = every
10 secs., (5 readings are taken and averaged so to get an accurate
determination at each depth). Each sensor reading returns an integer
value. Also, the baud rate of data transmission varies depending on
whether a ship or plane request was received, due to the time limits
of the craft in the vicinity,

DESIGN
All of the code in this problem is included in the main program.
There are no modules, procedures, or functions. It is structured,

o however, in that it does not contain "GOTO's", but rather controls
flow by the use of "while," "repeat... until," "do" loops, etc.

MCDIFICATION

.'e, It has been determined that your wind speed guage is inaccurate.
Each time you are asked for the wind speed, read the wind speed guage
twice in 3 row and average the two readings to obtain your reading.
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PROGRAM OVERVIEW
Host-At-Sea Buoy Problem
In—Line - Complex

REQUIREMENTS

This program was designed to simulate a real-time system. It
concerns a bouy which provides navigation and weather data to air and
ship traffic at sea., It collects wind, temperature, and location
data, and transmits summaries every 60 seconds, or more detailed
information whenever requested by a passing plane or ship.
Additionally, in the case of an emergency, it may be told to broadcast
an S0S. It will broadcast this SOS every 10 seconds until it is
turned off by a separate request. Each bouy has a small computer, 2
temperature sensors (each one at a different depth), wind direction
and speed gauges, a location detector, as well as a receiver and a
transmitter. Sending an SOS is considered of highest priority, then
air and ship requests, respectively, and lastly, the periodic
transmissions. To maintain accurate information, readings are taken
from the sensing devices at fixed intervals: wind sensors = every 30
secs.; Gmega (i.e, location) = every 10 secs; and temperatures = every
10 secs., (5 readings are taken and averaged so to get an accurate
determination at each depth). FEach sensor reading returns an integer
value. Also, the baud rate of data transmission varies depending on
whether a ship or plane request was received, due to the time limits
of the craft in the vicinity.

DESIGN
All of the code in this problem is included in the main program.
There are no modules, procedures, or functions. It is structured,

however, in that it does not contain "GOTO's", but rather controls
flow by the use of "while," "repeat... until," "do" loops, etc.

MODIFICATION

If the temperature and wind speed guages have some sort of error
(mechanical, electrical), the circuitry associated with it will return
the integer 999, If the temperature guage returns 999, you should pot
count that figure into the average for that averaged reading. (In
other words, do not add 999 to the accumlator, and subtract 1 from #_
TO_AVG.) If the wind speed guage returns 999, continue reading the
guage until you get a reading other than 999,
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{ L | PROGRAM OVERVIEW

) Host-At-Sea Buoy Problem

N Object-Oriented - Simple

REQUIREMENTS

'\9 This program was designed to simulate a real-time system. It

concerns a Host-at-Sea bouy which provides navigation and weather data
to air and ship traffic at sea. It collects wind, temperature, and
location data, and transmits summaries every 60 seconds, or more
detailed information whenever requested by a passing plane or ship.

y Additionally, in the case of an emergency, it may be told to broadcast

: an SOS signal every ten seconds; (a separate request will terminate

. it) . Each bouy has a small computer, 2 temperature sensors (each one

- at a different depth), wind direction and speed gauges, a location
detector, as well as a receiver and a transmitter. Sending an SOS is
considered of highest priority, then air and ship requests,
respectively, and lastly, the periodic transmissions. To maintain

accurate information, readings are taken from the sensing devices at

P € fixed intervals: wind sensors = every 30 secs.; Qmega (i.e. location)

= every 10 secs; and temperatures = every 10 secs., (5 readings are

taken and averaged so to get an accurate determination at each

- depth). Each sensor reading returns an integer value. Also, the baud

. rate of data transmission varies depending on whether ship or plane
request due to time limits of the craft in the vicinity.

DESIGN

This program was broken down into six main sections. The first is
GUAGES, which contains all the sensor functions which will read the
gauges so measurements can be taken. Second is MEMORY, in which all
q of the data taken from the gauges that will be later broadcast is
. stored. RECEIVER accepts current requests for data from passing
o planes or ships. The TRANSMITTER sends data periodically to any
. vessel which may be nearby, and sends detailed data or an "SOS"

- signal, when requested to do so. The fifth section of the program,
CLOCK, simulates the passage of time so that the appropriate readings
' may be taken at the proper intervals. Finally, the MAIN PROCESS
controls each of the other sections, beginning them, processing the
information which is accummulated in them, processing requests, and
directing the transmission of the data stored.

" MODIFICATION
j: It has been determined that your wind speed guage is inaccurate,

. Each time you are asked for the wind speed, read the wind speed quage
5 twice in a row and average the two readings to obtain your reading.




s PROGRAM OVERVIEW
} Host-At-Sea Buoy Problem
Object-Oriented - Complex

REQUIREMENTS

This program was designed to simulate a real-time system., It

- concerns a Host-at-Sea bouy which provides navigation and weather data
3 J to air and ship traffic at sea. It collects wind, temperature, and
location data, and transmits summaries every 60 seconds, or more
Sy detailed information whenever requested by a passing plane or ship.
Additionally, in the case of an emergency, it may be told to broadcast
L an SOS signal every ten seconds; (a separate request will terminate
it) . Each bouy has a small computer, 2 temperature sensors (each one
i at a different depth), wind direction and speed gauges, a location
AN detector, as well as a receiver and a transmitter. Sending an SOS is
B considered of highest priority, then air and ship requests,
- respectively, and lastly, the periodic transmissions. To maintain
s accurate information, readings are taken from the sensing devices at
fixed intervals: wind sensors = every 30 secs.; Omega (i.e. location)
"‘.“ = every 10 secs; and temperatures = every 10 secs., (5 readings are
e taken and averaged so to get an accurate determination at each
- depth). Each sensor reading returns an integer value. Also, the baud
rate of data transmission varies depending on whether ship or plane
request due to time limits of the craft in the vicinity.

DESIGN

This program was broken down into six main sections. The first is
e GUAGES, which contains all the sensor functions which will read the
P gauges so measurements can be taken. Second is MEMORY, in which all
of the data taken from the gauges that will be later broadcast is
@) stored., RECEIVER accepts current requests for data from passing
- planes or ships. The TRANSMITTER sends data periodically to any
vessel which may be nearby, and sends detailed data or an "SOS"
s signal, when requested to do so. The fifth section of the program,
CIOCK, simulates the passage of time so that the appropriate readings
may be taken at the proper intervals. Finally, the MAIN PROCESS
Py controls each of the other sections, beginning them, processing the
information which is accummulated in them, processing requests, and
directing the transmission of the data stored.

< MODIFICATION
.‘ If the temperature and wind speed guages have some sort of error
O (mechanical, electrical), the circuitry associated with it will return
el the integer 999, If the temperature guage returns 999, you should pot
¥ I count that figure into the average for that averaged reading. (In
‘e other words, do not add 999 to the accumulator, and subtract 1 from &_
-1 TO_AVG.) If the wind speed guage returns 999, continue reading the
on guage until you get a reading other than 999.
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PROGRAM OVERVIEW
Military Address Problem
Functional Decomposition - Simple

REQUIREMENTS

This program is designed to search for and print the addresses
within a certain Postal code area, and/or to do the same for the
addresses with- in a certain O-Grade, (the numerical representation of
an officer's rank.) It also keeps a running total of the number of
labels printed out for each zip code and a breakdown of the number
sent to each rank within that zip code. In the database, addresses
follow one after the other, each in a separate record, and can be read
in as records. The records are sorted by zip code, and, within zip,
by grade. Each address consists of 11 fields, each field on one line,
which follow sequentially, in the following order: Title, Last Name,
Given Names, Branch or Code, Command or Activity, Street or P.0.Box,
City, State or Provinvce, Country, Postal code, O-Grade. The output
format for labels is: [line 1]Title Given Names Last Name [2]Branch
or Code [3)Commmand or Activity [4]City, State or Province
{5]1Country Postal Code.

DESIGN OVERVIEW
This program was broken down into 2 primary modules. The first is
the data file which contains the records to be examined. The other is
the main process which examines the data for matches to the input
criteria specified by the user on the terminal.
MODIFTCATION
The mailing label currently does not print the street address.
The labels should be changed so that the street address appears as the
forth line of the label.

EXAMPLE :

Lt. George Smith

Air Force

Bolling

1234 wWest Street <— this is the new line added
Washington, D.C.

22303
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PROGRAM OVERVIEW <
- Military Address Problem
- Functional Decomposition - Complex

REQUIREMENTS

This program is designed to search for and print the addresses within 4
a certain Postal code area, and/or to do the same for the addresses with-
in a certain O-Grade, (the numerical representation of an officer's
rank.) It also keeps a running total of the number of labels printed out
for each zip code and a breakdown of the number sent to each rank within
that zip code. In the database, addresses follow one after the other,
each in a separate record, and can be read in as records. The records are i
sorted by zip code, and, within zip, by grade. Each address consists of
11 fields, each field on one line, which follow sequentially, in the
following order: Title, Last Name, Given Names, Branch or Code, Command or
Activity, Street or P.O.Box, City, State or Provinvce, Country, Postal
code, O-Grade. The output format for labels is: [line 1]Title Given
Names Last Name [2]Branch or Code [3]Commmand or Activity [4]City, State
or Province [5]Country Postal Code. L

DESIGN OVERVIEW

This program was broken down into 2 primary modules. The first is the
data file which contains the records to be examined. The other is the |
main process which examines the data for matches to the input criteria
specified by the user on the terminal,

MODIFICATION

The name line currently prints the person's title, given names, and
last name (e.g., Lt. Alan C. Schultz). A new data field (a 12th field) is
now in the data base, but the program neither recognizes nor uses this ‘
information. This field is a Boolean that represents whether or not the i
person is retired., This field should be incorporated into the program so
that this field can be added to the name line as the first item to be
printed. With this modification, the output would be as follows: 1

Column: 1234567890123456789012345678901234567890
If Retired:
Retired Lt. Alan C. Schultz
If Not Retired:
Lt. Alan C, Schultz 4
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PROGRAM OVERVIEW
Military Address Problem
In-Line - Simple

REQUIREMENTS

This program is designed to search for and print the addresses
within a certain Postal code area, and/or to do the same for the
addresses with~ in a certain O-Grade, (the numerical representation of
an officer's rank.,) It also keeps a running total of the number of
labels printed out for each zip code and a breakdown of the number
sent to each rank within that zip code. In the database, addresses
follow one after the other, each in a separate record, and can be read
in as records. The records are sorted by zip code, and, within zip,
by grade. Each address consists of 11 fields, each field on one line,
which follow sequentially, in the following order: Title, Last Name,
Given Names, Branch or Code, Command or Activity, Street or P.0.Box,
City, State or Provinvce, Country, Postal code, O~Grade. The output
format for labels is: [line 1]Title Given Names Last Name [2]Branch
or Code [3]Commmand or Activity [4]City, State or Province
[S]1Country Postal Code.

DESIGN OVERVIEW

This program was written entirely with in-line code such that all
code is included in the main program. There are no modules,
procedures or functions, although it is structured in that it does not
use "goto's", but rather controls flow by the use of "while,"
"repeat.,.until,™ "do" loops, etc.

MODIFICATION

The mailing label currently does not print the street address.
The labels should be changed so that the street address appears as the
forth line of the label.

EXAMPLE:

Lt. George Smith

Air Force

Bolling

1234 West Street <— this is the new line added
Washington, D.C.

22303

...........
- < - - e e e P R A S S SR S L A N U
PRI R R A P I IR e S P TR e >

P PR ST e - Fel ...
SIS S S S SR St NN STt S S S TSR S S A I R S,



- . TRy B ar A el At A 46 A AN A A A R e A ) |

T
1
Y
5
9
l’
.
K
R
P
4
<

L
ll

- v oy
qu P
» RPN " .,
5 IR

B

PRl A A

I

PROGRAM OVERVIEW
Military Address Problem
In-Line - Complex

roe

REQUIREMENT'S

This program is designed to search for and print the addresses
within a certain Postal code area, and/or to do the same for the
addresses with- in a certain O-Grade, (the numerical representation of
an officer's rank.) It also keeps a running total of the number of
labels printed out for each zip code and a breakdown of the number
sent to each rank within that zip code. 1In the database, addresses
follow one after the other, each in a separate record, and can be read
in as records. The records are sorted by zip code, and, within zip,
by grade. Each address consists of 11 fields, each field on one line,
which follow sequentially, in the following order: Title, Last Name,
Given Names, Branch or Code, Command or Activity, Street or P.0.Box,
City, State or Provinvce, Country, Postal code, O-Grade. The output
format for labels is: [line 1]Title Given Names Last Name [2]Branch
or Code [3]Commmand or Activity [4]City, State or Province
[5]1Country Postal Code.

DESIGN OVERVIEW

This program was written entirely with in-line code such that all
code is included in the main program. There are no modules,
procedures or functions, although it is structured in that it does not
use "goto's", but rather controls flow by the use of "while,"
"repeat.,.until," "do"™ loops, etc.

MODIFICATION

The name line currently prints the person's title, given names,
and last name (e.g., Lt. Alan C. Schultz). A new data field (a 12th
field) is now in the data base, but the program neither recognizes nor
uses this information., This field is a Boolean that represents
whether or not the person is retired. This field should be
incorporated into the program so that this field can be added to the ‘
name line as the first item to be printed. With this modification,
the output would be as follows: \

Colum: 1234567890123456789012345678901234567890
If Retired: |
Retired Lt. Alan C. Schultz ;
If Not Retired:
Lt. Alan C. Schultz
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| @ PROGRAM OVERVIEW

4 Military Address Problem
{ Object-Oriented - Simple
b

{ REQUIREMENTS

!

® This program is designed to search for and print the addresses

within a certain Postal code area, and/or to do the same for the

! addresses with- in a certain O-Grade, (the numerical representation of

i an officer's rank.) It also keeps a running total of the number of
labels printed out for each zip code and a breakdown of the number
sent to each rank within that zip code. In the database, addresses

PY follow one after the other, each in a separate record, and can be read

: in as records. The records are sorted by zip code, and, within zip,
by grade. Each address consists of 11 fields, each field on one line,
which follow sequentially, in the following order: Title, Last Name,
Given Names, Branch or Code, Command or Activity, Street or P.0O.Box,
City, State or Provinvce, Country, Postal code, O-Grade. The output
) format for labels is: [line 1]Title Given Names Last Name [2]Branch

- or Code [3]Commmand or Activity [4]City, State or Province

{5]1Country Postal Code.

DESIGN OVERVIEW

) This program was broken down into three main sections: the file

object, which contains the records to be examined; the label object,

which formats the information to be printed on the labels; and the

main process, which controls all operations on these objects, )
temporarily stores and passes information, and reads input from the ;
terminal

MODIFICATION
f The mailing label currently does not print the street address.

] The labels should be changed so that the street address appears as the
f forth line of the label.

AL

EXAMPLE:

Lt. George Smith
Air Force
Bolling
Py 1234 West Street <— this is the new line added
Washington, D.C.
22303
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PROGRAM OVERVIEW
Military Address Problem
Object-Oriented - Complex

REQUIREMENT'S

This program is designed to search for and print the addresses
within a certain Postal code area, and/or to do the same for the
addresses with—- in a certain O-Grade, (the numerical representation of
an officer's rank.) It also keeps a running total of the number of
labels printed out for each zip code and a breakdown of the number
sent to each rank within that zip code. In the database, addresses
follow one after the other, each in a separate record, and can be read
in as records. The records are sorted by zip code, and, within zip,
by grade. Each address consists of 11 fields, each field on one line,
which follow sequentially, in the following order: Title, Last Name,
Given Names, Branch or Code, Command or Activity, Street or P.0.Box,
City, State or Provinvce, Country, Postal code, O-Grade. The output
format for labels is: [line 1]Title Given Names Last Name [2]Branch
or Code [3]Commmand or Activity [4]City, State or Province
[S)Country Postal Code.

DESIGN OVERVIEW

This program was broken down into three main sections: the file
object, which contains the records to be examined; the label object,
which formats the information to be printed on the labels; and the
main process, which controls all operations on these objects,
temporarily stores and passes information, and reads input from the
terminal

MODIFICATION

The name line currently prints the person's title, given names,
and last name (e.g., Lt. Alan C, Schultz). A new data field (a 12th
field) is now in the data base, but the program neither recognizes nor
uses this information. This field is a Boolean that represents
whether or not the person is retired., This field should be
incorporated into the program so that this field can be added to the
name line as the first item to be printed. With this modification,
the output would be as follows:

Column: 1234567890123456789012345678901234567890
If Retired:
Retired Lt. Alan C. Schultz
If Not Retired:
Lt., Alan C. Schultz
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PROGRAM OVERVIEW
Student Transactions Problem
Functional Decomposition - Simple

REQUIREMENTS

RO " 2
e

This program is designed to update the registrar's listings for
students at a university. The registrar has on disk (called the permanent
file) the name and social security number of each student enrolled (in
alphabetical order). Each day a transaction file is created which
contains a command followed by, when needed, the student's name and social
security number, The commands are: ‘A' = add a student in the proper
alphabetic location, ‘D' = drop a student, ‘I' = inquire about whether a
student is enrolled, and ‘L' = list all students. ‘A', ‘D', and ‘I'
require a student name and social security number; ‘L' does not. The
format of the permanent file is: [column 1] blank, [colum 2-36] name,
[column 37-45] social security number. The format of the transaction file
is: [colum 1] command, [column 2-36] name, [column 37-45] social security
nunber. In each case, the social security number is written without
spaces or hyphens. The program reads the permanent file into a linked
list in main memory. It then reads each line of the transactional file
and modifies the linked list accordingly. Once the transactional file is
finished, the linked list is copied back to the permanent file.

DESIGN

This program was broken down into three primary modules. The first is
the permanent file which contains the official list of all students and
their social security numbers (in alphabetical order). The second is the
transaction file, which consists of all requests of or alteration to the
list which need to be done. The third module, the main process, actually

performs the operations.,

MODIFICATION

The following should be added to the output. When doing the ‘L'
command, count the number of students, and after all the student names
have been printed, print the total number of students using the following

format:

Colum 123456789012345678901234567890
Last name in list
Total students: *

* indicates that the integer value associated with this total should be
printed starting in this colum.




o' 4e v e s oy a0 s s aedh sl o ABSaAam. cal e g ~aas ana dte SAa-gte Ste Ste 2\e B A AV BS ot Aeh Beh fesh et Aok e ol Sat Gav ARS A" o r...‘,._V'._.‘__,_V_,..;._.-H,_._‘___T

9
»
9
LF ﬂ
b PROGRAM OVERVIEW

Student Transactions Problem
Functional Decomposition - Complex

REQUIREMENTS

This program is designed to update the registrar's listings for ?
students at a university. The registrar has on disk (called the permanent
file) the name and social security number of each student enrolled (in
alphabetical order). Each day a transaction file is created which
contains a command followed by, when needed, the student's name and social
security number. The commands are: ‘A' = add a student in the proper
alphabetic location, ‘D' = drop a student, ‘I' = inquire about whether a ?
student is enrolled, and ‘L' = list all students. ‘A‘', ‘D', and ‘I‘
require a student name and social security number; ‘L' does not. The
format of the permanent file is: [colum 1] blank, [column 2-36] name,
[colum 37-45] social security number. The format of the transaction file
is: [colum 1] command, [column 2-36] name, [colum 37-45] social security
number. In each case, the social security number is written without
spaces or hyphens, The program reads the permanent file into a linked
list in main memory. It then reads each line of the transactional file
and modifies the linked list accordingly. Once the transactional file is
finished, the linked list is copied back to the permanent file,

DESIGN q

This program was broken down into three primary modules. The first is
the permanent file which contains the official list of all students and
their social security numbers (in alphabetical order). The second is the
transaction file, which consists of all requests of or alteration to the
list which need to be done. The third module, the main process, actually q
performs the operations.,

MODIFICATION

The permanent file now contains some additional information about the
class of the student (freshman, sophomore, junior, senior, graduate). 1
This information is contained in colum 46 of each record in the permfile
as a number in character format.

Freshman
Sophomore
Junior
Senior {
Graduate. ‘

1
2
3
4
5

Change the ‘L' command so that when it prints the student list, it prints

the number representing class membership immediately following the SS

number (i.e. with no spaces between the two.) In making this

modification, remember that the program should read in this new {
information and preserve it for use in the transactions.

Colum 12345678901234567890123456789012345678901234567890

example:
Anderson, Harry 009981123} {

This is the number repre-
senting class membership

-I‘. 4‘$v IR Y i
. e
L PRESINERS SRR




J— - _— A AP el
T o W T W e N A T T AR T T T T A Palich

PROGRAM OVERVIEW
® Student Transactions Problem
In-Line - Simple

b
| REQUIREMENTS
i
i

This program is designed to update the registrar's listings for

students at a university. The registrar has on disk (called the

® permanent file) the name and social security number of each student

enrolled (in alphabetical order). Each day a transaction file is

created which contains a command followed by, when needed, the

student's name and social security number. The commands are: ‘A' =

add a student in the proper alphabetic location, ‘D' = drop a student,

*I' = inquire about whether a student is enrolled, and ‘L' = list all

® students. ‘A', ‘D', and 'I' require a student name and social
security number; ‘L' does not. The format of the permanent file is:
[colum 1] blank, [colum 2-36] name, [colum 37-45] social security
number. The format of the transaction file is: [column 1] command,
[colum 2-36] name, [colum 37-45] social security number. In each
case, the social security number is written without spaces or

G hyphens. The program reads the permanent file into a linked list in
main memory. It then reads each line of the transactional file and
modifies the linked list accordingly. Once the transactional file is
finished, the linked list is copied back to the permanent file.

DESIGN

All of the code in this problem is included in the main program.
There are no modules, procedures, or functions. It is structured,
however, in that it does not contain "GOTO's", but rather controls
flow by the use of "while," "repeat... until," "do" loops, etc.

MODIFICATION

The following should be added to the output. When doing the ‘L'
command, count the number of students, and after all the student names
have been printed, print the total number of students using the

'™ following format:

Column 123456789012345678901234567890
Last name in list
Total students: *

.j’i.
A
N
]
_\
j
.‘
]

v -

* indicates that the integer value associated with this total should
be printed starting in this colum.

Pl R OV R
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PROGRAM OVERVIEW
Student Transactions Problem
In-Line - Complex

REQUIREMENTS

This program is designed to update the registrar's listings for
students at a university. The registrar has on disk (called the permanent
file) the name and social security number of each student enrolled (in
alphabetical order). Each day a transaction file is created which
contains a command followed by, when needed, the student's name and social
security number. The commands are: ‘A' = add a student in the proper
alphabetic location, ‘D' = drop a student, ‘I' = inquire about whether a
student is enrolled, and ‘L' = list all students. °'A', ‘D', and ‘I'
require a student name and social security number; ‘L' does not. The
format of the permanent file is: [colum 1] blank, [column 2-36] name,
[column 37-45] social security number. The format of the transaction file
is: [colum 1] command, [colum 2-36] name, [column 37-45] social security
number. In each case, the social security number is written without
spaces or hyphens. The program reads the permanent file into a linked
list in main memory. It then reads each line of the transactional file
and modifies the linked list accordingly. Once the transactional file is
finished, the linked list is copied back to the permanent file,

DESIGN

All of the code in this problem is included in the main program.
There are no modules, procedures, or functions, It is structured,
however, in that it does not contain “GOTO's", but ratlier controls flow by
the use of "while," "repeat... until," "do" loops, etc.

MODIFICATION

The permanent file now contains some additional information about the
class of the student (freshman, sophomore, junior, senior, graduate).
This information is contained in column 46 of each record in the permfile
as a number in character format.

1 = Freshman
2 = Sophomore
3 = Junior
4 = Senior
5 = Graduate.

Change the ‘L' command so that when it prints the student list, it prints
the number representing class membership immediately following the SS
number (i.e. with no spaces between the two.) In making this
modification, remember that the program should read in this new
information and preserve it for use in the transactions.

Colum 12345678901234567890123456789012345678901234567890

example:
Anderson, Harry 009981123}

|

|
This is the number repre-
senting class membership




PROGRAM OVERVIEW
Student Transactions Problem
Object-Oriented - Simple

REQUIREMENTS

This program is designed to update the registrar's listings for
students at a university. The registrar has on disk (called the
permanent file) the name and social security number of each student
enrolled (in alphabetical order). Each day a transaction file is
created which contains a command followed by, when needed, the
student's name and social security number. The commands are: ‘A' =
add a student in the proper alphabetic location, ‘D' = drop a student,
‘I' = inquire about whether a student is enrolled, and L' = list all
students, ‘A', ‘D', and ‘I' require a student name and social
security number; ‘L' does not, The format of the permanent file is:
[colum 1] blank, [colum 2-36] name, [column 37-45] social security
number. The format of the transaction file is: [column 1] command,
[colum 2-36] name, [column 37-45] social security number. In each
case, the social security number is written without spaces or
hyphens. The program reads the permanent file into a linked list in
main memory. It then reads each line of the transactional file and
modifies the linked list accordingly. Once the transactional file is
finished, the linked list is copied back to the permanent file.

DESIGN

This program was broken down into four main sections. The first
is the permanent file object, which contains the official list of all
students and their social security numbers (in alphabetical order).
The second is the transaction file object, which consists of all
requests of or alteration to the list which need to be done. The
third section, the linked list object, is a representation of all
students within the computer memory and which is acted upon by the
transaction file. And finally, the printer object outputs any
requested information, error messages, and a completion message once
the transaction file has been successfully processed.

MODIFICATION

The following should be added to the output. When doing the ‘L'
command, count the number of students, and after all the student names
have been printed, print the total number of students using the
following format:

Colum 123456789012345678901234567890
Last name in list
Total students: *

* indicates that the integer value associated with this total should
be printed starting in this colum.
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PROGRAM OVERVIEW
Student Transactions Problem
Object-Oriented — Complex

REQUIREMENTS

This program is designed to update the registrar's listings for students at
a university. The registrar has on disk (called the permanent file) the name
and social security number of each student enrolled (in alphabetical order).
Each day a transaction file is created which contains a command followed by,
when needed, the student's name and social security number. The commands are:
*A' = add a student in the proper alphabetic location, ‘D' = drop a student,
*I' = inquire about whether a student is enrolled, and L' = list all
students. ‘A', ‘D', and ‘I' require a student name and social security number;
‘L' does not. The format of the permanent file is: [colum 1] blank, [column
2-36] name, [colum 37-45] social security number. The format of the
transaction file is: [colum 1] command, [colum 2-36] name, [column 37-45]
social security number. In each case, the social security number is written
without spaces or hyphens. The program reads the permanent file into a linked
list in main memory. It then reads each line of the transactional file and
modifies the linked list accordingly. Once the transactional file is finished,
the linked list is copied back to the permanent file,

DESIGN

This program was broken down into four main sections. The first is the
permanent file object, which contains the official list of all students and
their social security numbers (in alphabetical order). The second is the
transaction file object, which consists of all requests of or alteration to the
list which need to be done. The third section, the linked list object, is a
representation of all students within the computer memory and which is acted
upon by the transaction file. And finally, the printer object outputs any
requested information, error messages, and a completion message once the
transaction file has been successfully processed.

MODIFICATION

The permanent file now contains some additional information about the class
of the student (freshman, sophomore, junior, senior, graduate). This
information is contained in colum 46 of each record in the permfile as a
number in character format,

Freshman
Sophomore
Junior

Ut W N
nuwnmn

Change the ‘L' command so that when it prints the student list, it prints the
number representing class membership immediately following the SS number (i.e.
with no spaces between the two.) In making this modification, remember that
the program should read in this new information and preserve it for use in the
transactions.

Column 12345678901234567890123456789012345678901234567890

exanple:
Anderson, Harry 0099811231
This is the number representing
class membership
...... : - T et -" - i.' N -:‘ :h . : N
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